

Modelling solvency and liquidity stress interactions

Claus Puhr & Stefan W. Schmitz

Oesterreichische Nationalbank

6th Expert forum on advanced stress testing techniques IMF/CCBS London, December 9/10, 2014

Disclaimer

The opinions expressed in this presentation are those of the authors and do not necessarily reflect those of the OeNB or the Euro System.

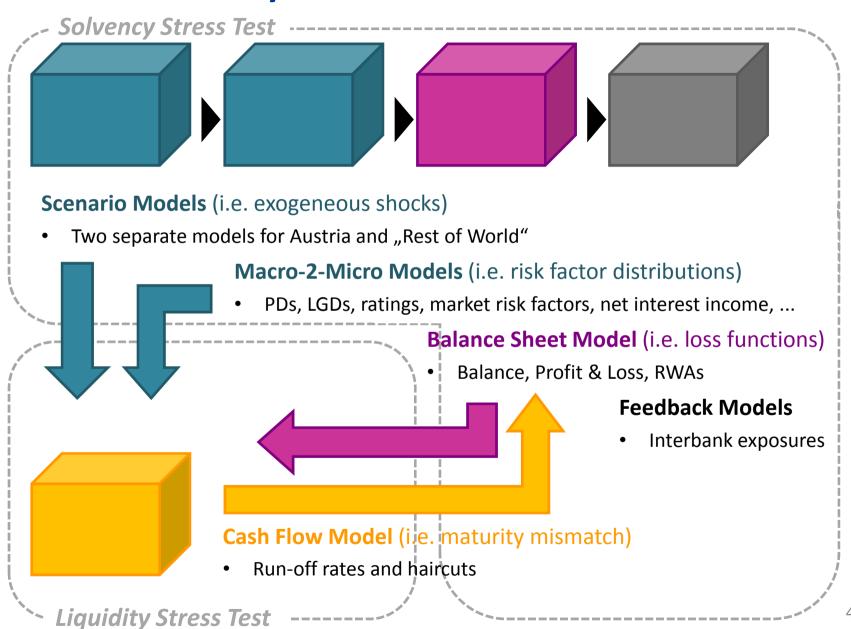
The authors would like to thank Kujtim Avdiu, Michael Boss, Helmut Elsinger, Robert Ferstl, Emanuel Kopp, Gerald Krenn, Benjamin Neudorfer, David Seres, Christoph Siebenbrunner, Michael Sigmund, Ralph Spitzer and Martin Summer for their contributions to stress testing at the OeNB and their support while writing this paper.

Moreover, they would like to also thank Nicolas Blancher and Laura Valderrama for the cooperation during the Austrian FSAP 2013, on which the authors base the example in this presentation.

Finally, the authors would like to thank the chair of the session, Christian Schmieder, for the long running cooperation and his helpful feedback on the work presented today.

Agenda

Austrian stress test models


Solvency stress test model

Liquidity stress test model

Interaction solvency/liquidity

Results & conclusions

Austrian solvency stress test models

Data sources for stress testing in Austria

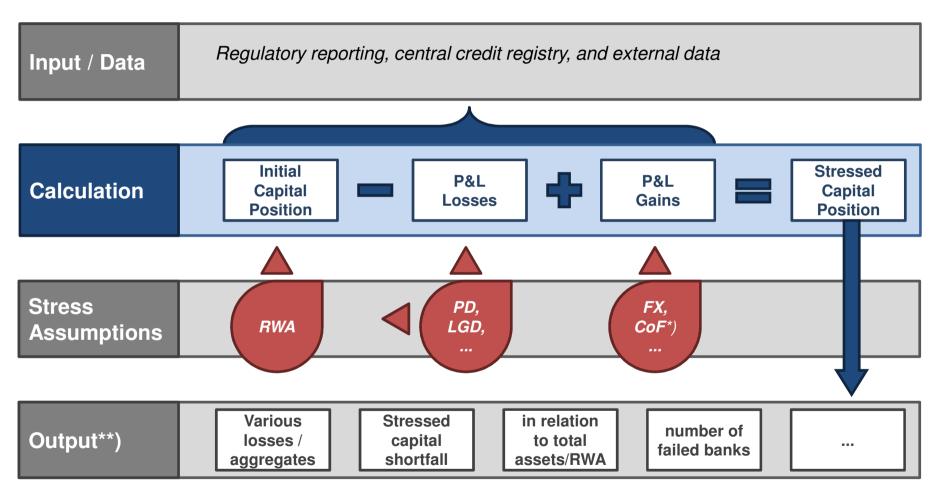
Reporting	Solvency	Liquidity	
Scope	All Austrian banks (~600 consolidated, ~800+100 unconsolidated)	29 largest Austrian banks on a consolidated / sub-consolidated basis	
Frequency	Quarterly	Weekly	
Sources	FINREP & COREP (incl. cross-border subs) Central Credit Registry NFC default frequencies Bloomberg data Macroeconomic variables	Weekly liquidity reporting Unencumbered collateral deposited at OeNB Reporting data on NFC bond holdings	
Cut-off date (for this example)	2012Q4	2012Q4	

Agenda

Austrian stress test models

Solvency stress test model

Liquidity stress test model


Interaction solvency/liquidity

Results & conclusions

Main challenges of solvency stress tests

Main challenges	OeNB solution
Availability of granular data	Central Credit Registry
Robustness of the scenario	Cooperation with Economics Department
Uncertainty of the risk factor distributions	Model averaging for macro-2-micro models
Uncertainty with regard to the loss functions	Bottom-up benchmarks, cross sectional comparisons, extensive back testing
Explicit link to liquidity	Cost of funding, fire sales (preliminary)
Network externalities	Only partially addressed (IB contagion)

Solvency stress testing model (ARNIE**)

^{*)} CoF = Cost of Funding

^{**)} ARNIE = Applied Risk, Network and Impact assessment Engine, OeNB's new systemic risk assessment tool, fully implemented in Matlab (see Feldkircher et al., 2013)

Agenda

Austrian stress test models

Solvency stress test model

Liquidity stress test model

Interaction solvency/liquidity

Results & conclusions

Liquidity stress testing model

*) CBC = Counter Balancing Capacity

^{**)} A bank fails the stress test (i.e, has a liquidity gap) if it is not able to cover a possible net funding gap (i.e., Inflows < Outflows) with it's counterbalancing capacity

Main challenges of liquidity stress tests

Main challenges	OeNB solution
Availability of cash flow data	Weekly cash flow report in six currencies
Scenario design	Close link to solvency scenario
Scenario calibration	Extensive empirical foundation
Parameter uncertainty	Three groups of 12 embedded scenarios
Explicit link to solvency	Macro-to-PD shifts feed into CC migration matrix in CBC & CIF (loans)
Treatment of CBs as lender of last resort	Three stage gradual approach

Data requirements

Contractual / behavioural maturities

Gross / net cash flows

approach /
separation of li risk
exposure & risk
bearing capacity

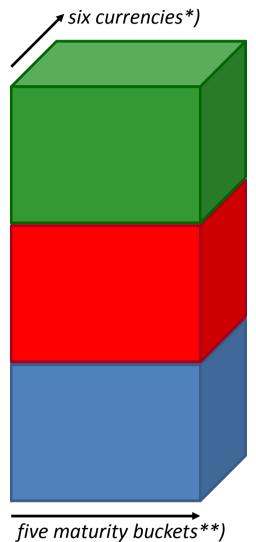
Stock of liquid assets
/ counterbalancing
capacity

Single currency / multiple currencies

Frequency, cut-off date and reporting time lag

Product
oriented/accounting
balance sheet based
versus functional
items

Reporting period and bucket size (9 buckets)


Consolidated / solo

Differentiation according to business model / comprehensive template

Template design crucial

Contractual & behavioural	 Without contractual → results biased Behavioural assumptions explicit → reveal risk tolerance Allow for institution specifity
Gross cash flows	 Allow for differentiated analysis of liquidity risk exposure → more risk sensitive More granular stress tests possible
Counterbalancing capacity	 Consistency across inflows/outflows counterbalancing capacity Makes implicit assumtions of stock explicit → information gain
Multiple currencies	Liquidity risk currency specific Links across currencies product specific
Functional items	 Common language among li-risk managers & supervisors Facilitates scenario design & calibration

Austrian maturity mismatch template

Inflows (14 line items)

- Maturing instruments (loans, swaps, ...)
- Fixed / expected issuances (short- and long-term)
- Expected deposit inflows (un/secured, retail / wholesale)

Outflows (16)

- New loans, advances, calling of lines, ...
- Tender, Repos, Issuances (due)
- Expected deposit outflows (un/secured, retail / wholesale)

Counterbalancing Capacity (9)

- Cash, excess reserves at the central bank (by rating category)
- Tender / unencumbered collateral
- Liquid and other assets available for collateralisation

^{*)} Six currencies include: EUR, USD, CHF, GBP, YEN and a basket of other currencies.

^{**)} Five maturity buckets cover: up to 5 days, 1 month, 3 months, 6 months and 12 months.

Scenario calibration

Consistency with solvency scenario

• Often contain relevant parameters (e.g. bond prices)

Econometric approach not feasible

- Low frequency/high impact events
- Data hardly available

Product & market specific

• Reporting data & academic literature (IMF WP03/12, BCBS WP 24/25 2013)

Case studies

• Bank, market & country level (IMF WP03/12, BCBS WP 24/25 2013)

Output of solvency stress test

• See discussion below

Cumulative severity

parameter uncertainty – embedded scenarios

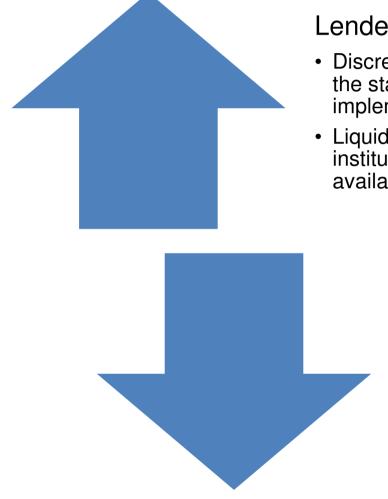
Scenario 1

- Closure of unsecured interbank markets
- Closure of FX Swap markets

Scenario 2

- Reduced issuance of short term / long term debt
- Increase in calling of credit committments
- Mild haircuts on unencumbered collateral in CBC

Scenario 3


- Dry up of funding markets no future debt issuance
- Severe increase in calling of credit committments
- Increased Haircuts on CBC according to the asset quality
- Reduction in planned financial investments (mitigating)

Scenario 4

- Combines scenario 3 with idiosyncratic shock
- Reduction of expected roll-over rates of wholesale and retail deposits

Reveals liquidity risk tolerance

Treatment of CBs as lender of last resort

Lender of last resort

- Discretionary/extra-ordinary deviation from the standard framework of monetary policy implementation
- Liquidity provided to individual/subsample of institutions on specific terms that are not available to other market participants

Monetary policy implementation

- Reaction to expected increase of the structural liquidity deficit at the target rate
- Always market oriented never individual bank focused
- Can entail deviatons from standard monetary policy

LoLR: focus on markets rather than failing bank

Arguments for reliance on LoLR

- Historical experience
- Theory
 - Potential efficiency gains under restrictive assumption (e.g. prevent asset fire sale contagion)

Arguments against reliance on LoLR

- Conflicts with raison-d'être for liquidity regulation
 - Internalise externality & moral hazard & efficient allocation of liquidity & risk
 - Qualitative liquidity regulation aims at self-insurance (CEBS 2009, 2010a, BCBS 2010)
- FX liquidity (e.g. Bulgaria)
- LoLR cannot be considered in isolation (subordination, bank resolution)
- Political economy of bail-outs
 - Interference in property rights, fiscal exposure, distributional effects
- CB discretion undermined
 - Delienation of illiquidity from insolvency impossible under time pressure
 - Conflict of interest with monetary policy implementation

Potential efficiency gains can be achieved by less distortionary alternatives

Less distortionary alternatives to standard LoLR

Pricing	Charging a fee according to the liquidity risk exposure and liquidity risk bearing capacity of the bank	Objective: Internalise the externality associated with liquidity risk → banks should be indifferent between effective self-insurance and insurance by the public	
		Challenge: unrealistic → fair price difficult to estimate (see pricing of RCLF in AUS)	
Conditionality	Automatic sanctions	Replacement of board members	
		Trigger for early intervention mechanism	
Liquidity provision to market rather than illiquid bank	Address asset fire sale externality	assumes other market participants cannot exploit underpricing due to liquidity constraints	
	Original concept of the LoLR according to Thornton and Bagehot	Enables other market participants to profit from underpricing Limits negative price effect	

Conclusions: No LoLR in liquidity stress testing

Ensure sufficient liquidity risk bearing capacity

 HQLA must be composed of assets that are (extremely) highly liquid → no asset fire sale externality

CB operations should be treated like other repos

- Except for standard monetary policy implementation
- Consistency between the individual building blocks of liquidity stress tests

Liquidity stress testing must ensure self-insurance

- No room for LoLR in liquidity stress testing
- Only standard monetary policy operations

Scenario & parameter uncertainty

Currencies Scenario severity increases (for inflows, outflows, counter balancing capacity) Eligibility of assets decreases 30 day Scenario **CBC Type Baseline Market Mild** Market Medium **Market Severe** Combined Full CBC Increased focus on market liquidity Market liquidity 90 day Scenario **CBC Type Baseline Market Mild Market Medium Market Severe** Combined Full CBC Increased focus on market liquidity Market liquidity

1 Year Scenario

CBC Type	Baseline	Market Mild	Market Medium	Market Severe	Combined
Full CBC					
Increased focus on market liquidity					
Market liquidity					0.1

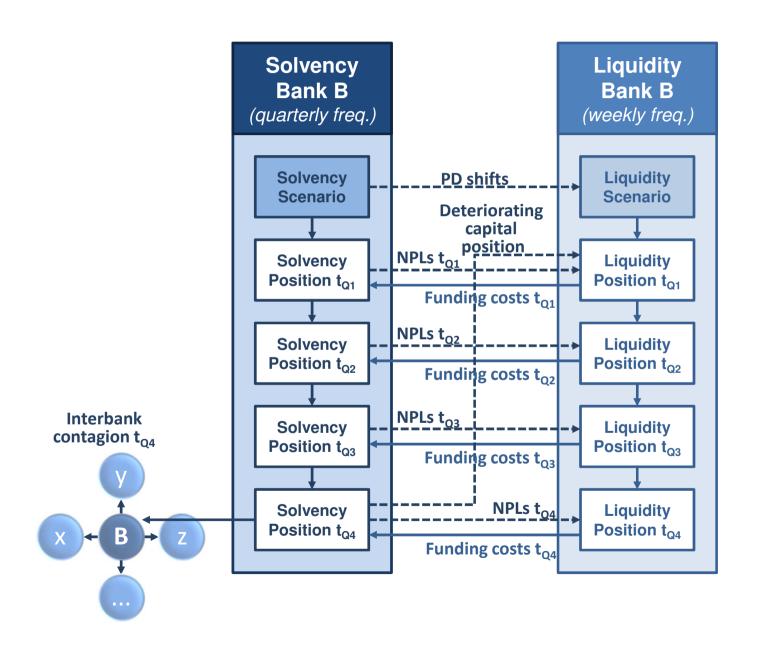
Agenda

Austrian stress test models

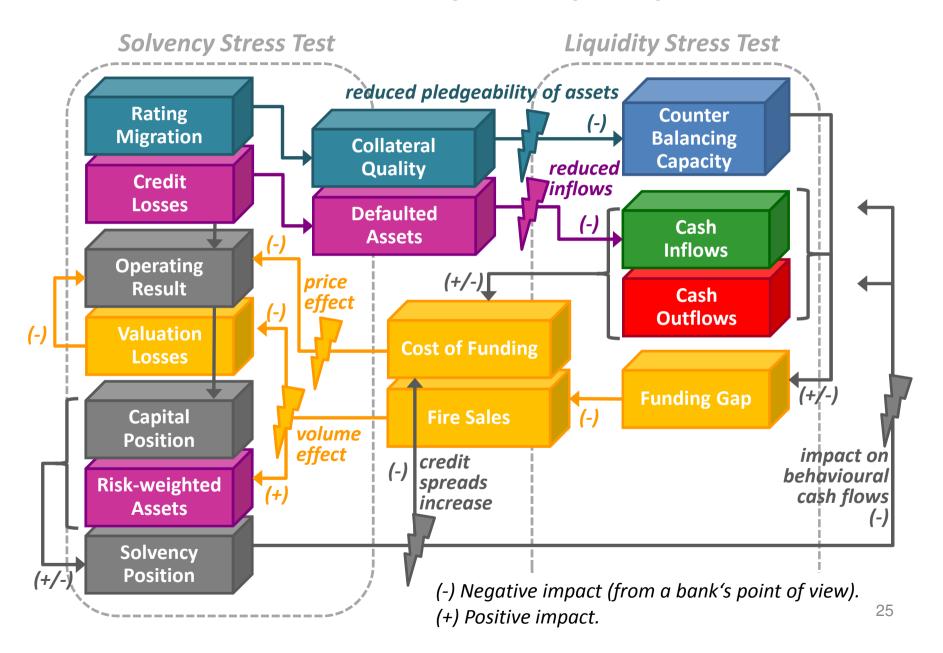
Solvency stress test model

Liquidity stress test model

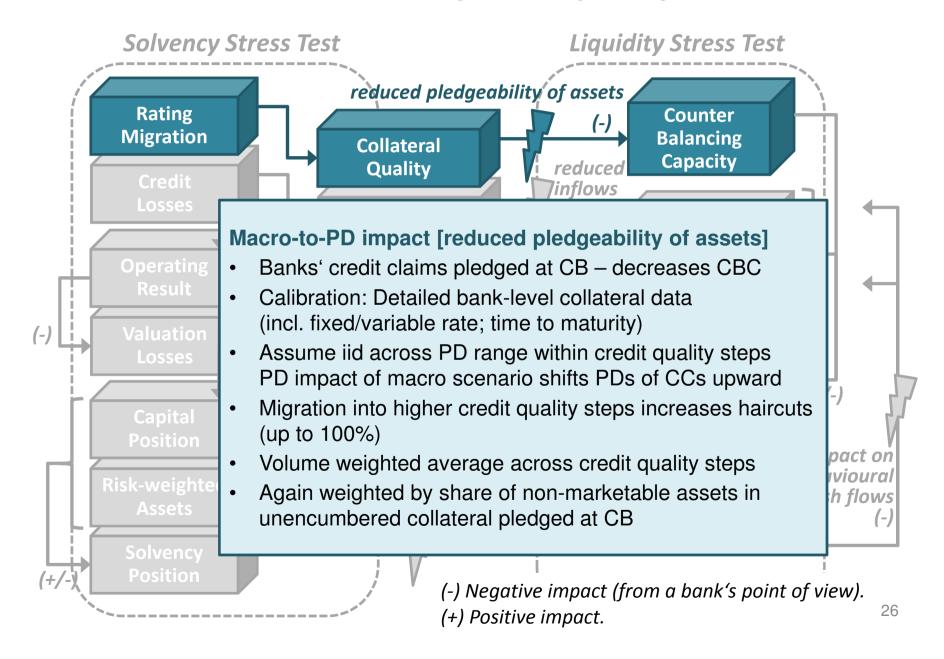
Interaction solvency/liquidity

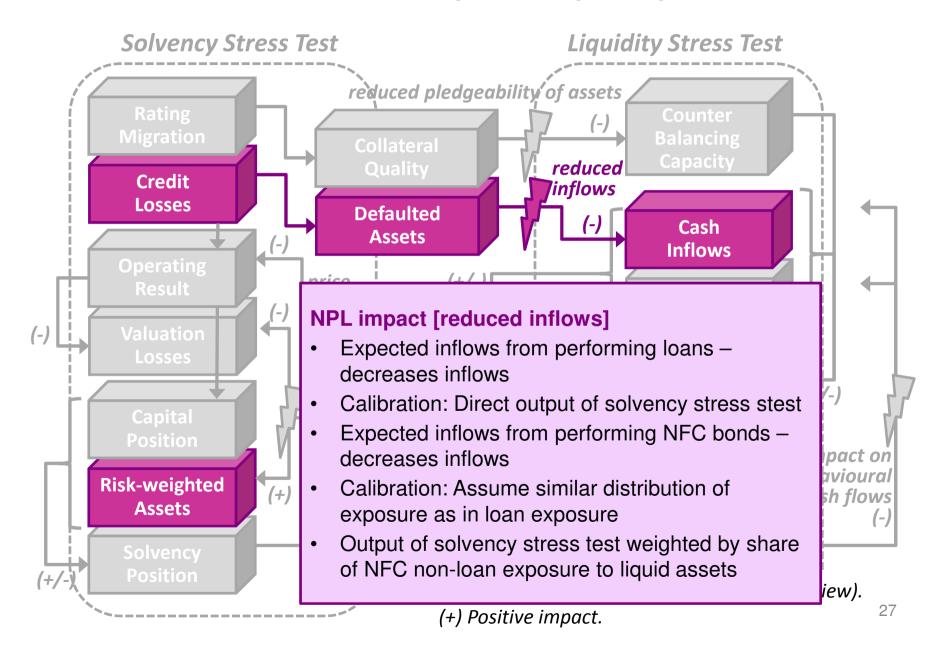

Results & conclusions

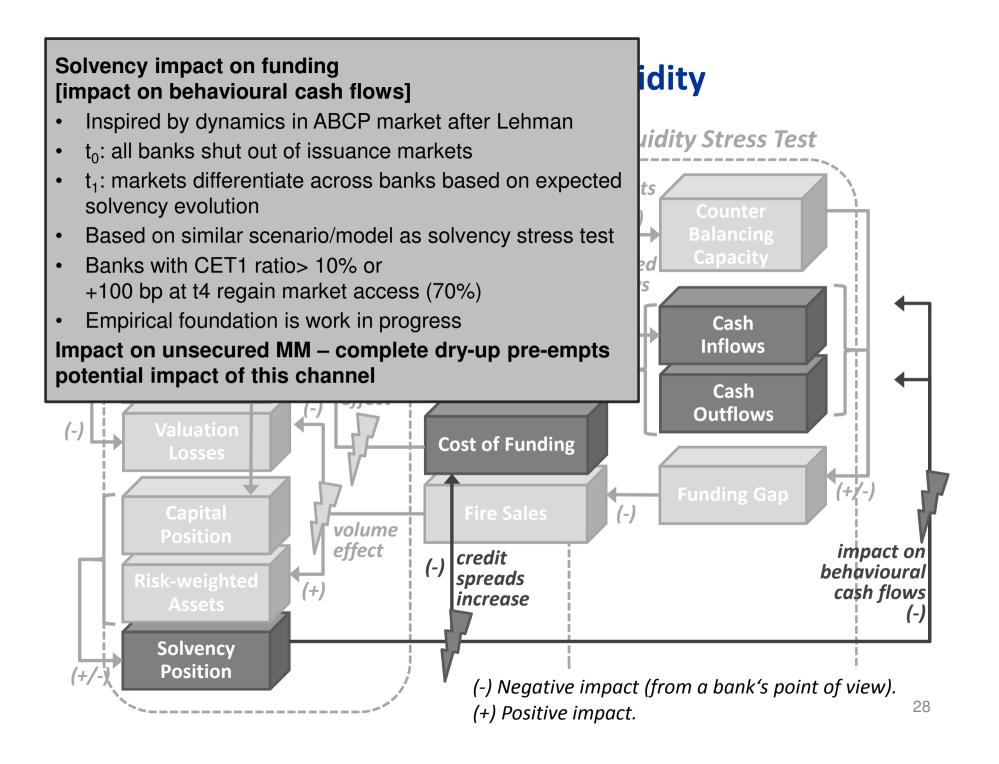
Interlinkages solvency / liquidity

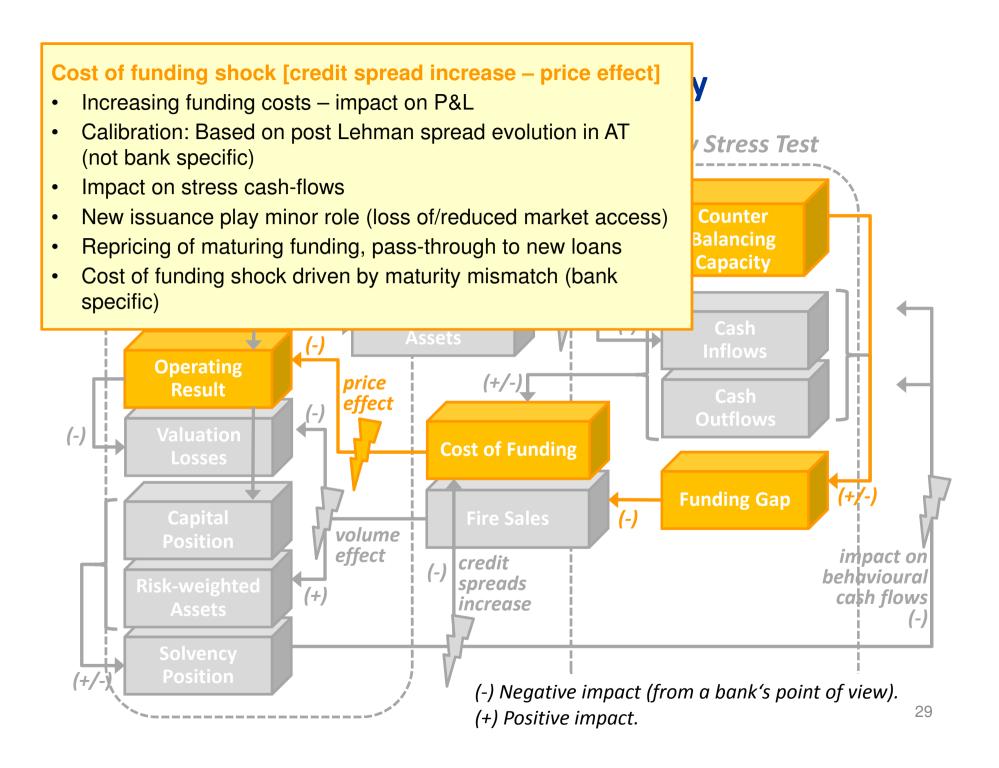

Solvency Stress Test	Mapping to Liquidity Stress Test
Deteriorating Capital Position	Ability to issue new CP & bonds (12M scenario)
Increase in Expected NPLs	Reduction in expected inflows from loan repayments Reduction of expected inflows from NFC bonds
Macro-driven PD Shifts	Implied rating migration of banks unencumbered collateral deposited at CB

Liquidity Stress Test	Mapping to Solvency Stress Test
Liquidity gap	Asset fire sales
Increase in Funding Costs	P&L effects

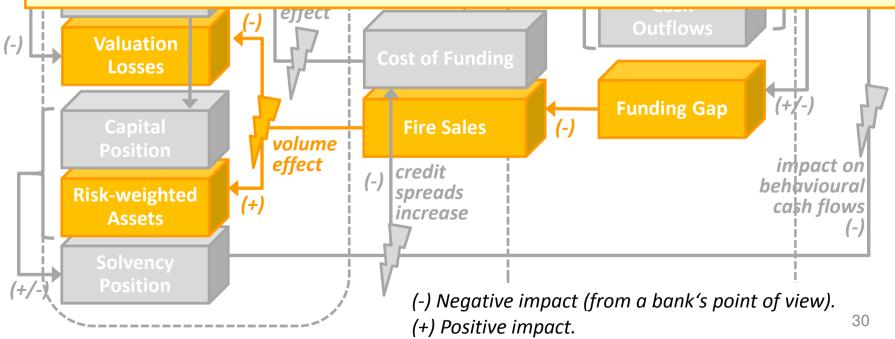

Timing / sequenzing of interaction


The interaction of solvency and liquidity




The interaction of solvency and liquidity

The interaction of solvency and liquidity



Asset fire sales losses [volume effect]

- Captures common exposure to market price & market liquidity effects
- Calibration: Based on HC of liquidity stress scenario & CC migration due to solvency
- Assets: Full CBC except callable, committed credit-lines, liquidity support received from holding company (binding commitment)
- Assumption: banks sell assets proportionally to composition of CBC
- Empirical evidence inconclusive

- Effect: Banks with same level of CBC but higher shares of less liquid assets face higher asset fire sale losses
- Caveats: CB treatment; static, non-behavioural; no additional fire sale loss haircuts

Important channels disregarded

- Impact of solvency on access to unsercured money market
 - Pre-empt by assumption of complete dry-up
- Impact of own liquidity position on supply of funds on unsecured money market & network dynamics
 - Pre-empt by assumption of complete dry-up
- Contagious bank runs
- Margin calls due to rating downgrades
- Deposit outflows due to rating downgrades

Agenda

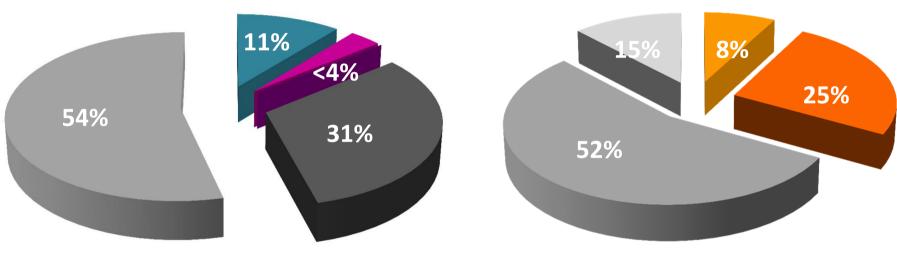
Austrian stress test models

Solvency stress test model

Liquidity stress test model

Interaction solvency/liquidity

Results & conclusions


Measuring the impact of interaction channels

(share of total impact on cumulated counter balancing capacity)

Solvency Stress Test

(share of total impact on P&L losses)

- Rating migration impact on banks' credit claims (i.)
- NPL effect on expected inflows from performing loans to non-banks (ii.)
- Losses on inflows from paper in own portfolio maturing (iii.)
- Market funding due to solvency position (iv.)
- Other liquidity impact not associated with solvency stress

- Cost of funding
- Fire sale losses
- Credit risk costs
- Other risk costs through P&L

Conclusions

- Supervisory experience, case studies, and the theoretical literature point at a number of potential channels for the interaction between solvency and liquidity stress testing
- Supervisory experience and the example demonstrate that these interactions are material
- Failure to integrate leads to substantially underestimation of the risk exposure of individual banks and banking systems
- Two interesting trade-offs:
 - Trade-off between the quantitative impact of channels and their respective model risk and/or parameter uncertainty
 - Trade-off between conceptual quality and actionable output

Policy recommendations

- The main policy recommendation is the need to integrate solvency and liquidity stress tests in order not to underestimate risk
 - Complex interactions require adequately complex models
 - Further research required
- Main objectives for solvency stress tests
 - Soundly integrate methodologies to cover the cost of funding
 - Move beyond the constant balance sheet assumption
- Main objectives for liquidity stress test
 - Consider the solvency impact on funding costs / volumes
 - Invest in the calibration of asset fire sales
- Decision makers have to understand that even the best models and calibrations cannot exonerate them from the burden of subjective judgement in risk assessment

Further research

- Identify further channels of intercation
- Empirical foundations for calibration
 - Event studies
 - Econometric analysis
- Second round effects
 - Incorporate dynamic balance-sheet
 - Balance-sheet optimisation rather than quantity restrictions
 - Price effects rather than quantity effects in macro-models
- Indirect contagion
 - Empirical evidence
- BCBS RTF TF on Liquidity Stress Testing
 - Studies some of these topics → paper in March 2015

Literature

BCBS (2013 a), 'Liquidity stress testing: a survey of theory, empirics and current industry and supervisory practice', Basel Committee on Banking Supervision WP No. 24, Basel.

BCBS (2013 b), 'Literature review of factors relating to liquidity stress – extended version', Basel Committee on Banking Supervision WP No. 25, Basel.

Feldkircher, M., G. Fenz, R. Ferstl, G. Krenn, B. Neudorfer, C. Puhr, T. Reininger, M. Schneider, C. Siebenbrunner, M. Sigmund and R. Spitzer (2013), '*ARNIE in Action: The 2013 FSAP Stress Tests for the Austrian Banking System*', Financial Stability Report No. 26, Vienna.

Puhr, C. and S. W. Schmitz (2013), 'A View From The Top – The Interaction Between Solvency And Liquidity Stress', Journal of Risk Management in Financial Institutions (forthcoming)

Schmieder, C., C. Puhr and M. Hasan (2011), 'Next Generation Balance Sheet Stress Testing', IMF Working Paper, 11/83, Washington D.C.

Schmieder, C., H. Hesse, B. Neudorfer, C. Puhr and S. W. Schmitz (2012), 'Next generation system-wide liquidity stress testing', IMF Working Paper, 12/03, Washington D.C.

Schmitz, S. W. (2013), 'The impact of the Liquidity Coverage Ratio (LCR) on the implementation of monetary policy', Economic Notes, 32/2, 1-36.

37